PACE in Scotland; Utilising machine learning to assess the importance of patient and clinician engagement in HTAs in SMC.
References:
- Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data Cleaning: Overview and Emerging Challenges. In Proceedings of the 2016 International Conference on Management of Data (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA, 2201–2206. https://doi.org/10.1145/2882903.2912574
- Mohan, Vijayarani. (2015). Preprocessing Techniques for Text Mining – An Overview.
- Raschka, Sebastian. (2018). Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. 10.48550/arXiv.1811.12808.
- Mohammed, Roweida & Rawashdeh, Jumanah & Abdullah, Malak. (2020). Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results. 243-248. 10.1109/ICICS49469.2020.239556.
- Yang, C., Fridgeirsson, E.A., Kors, J.A. et al. Impact of random oversampling and random undersampling on the performance of prediction models developed using observational health data. J Big Data 11, 7 (2024). https://doi.org/10.1186/s40537-023-00857-7.
- Bafjaish, S. S. (2020). Comparative Analysis of Naive Bayesian Techniques in Health-Related For Classification Task. Journal of Soft Computing and Data Mining, 1(2), 1-10.
- Qingyao Wu, Yunming Ye, Haijun Zhang, Michael K. Ng, Shen-Shyang Ho. ForesTexter: An efficient random forest algorithm for imbalanced text categorization. Knowledge-Based Systems, Volume 67, 2014, Pages 105-116, ISSN 0950-7051. https://doi.org/10.1016/j.knosys.2014.06.004.
- Tang, Y. (2013). Deep Learning using Support Vector Machines. ArXiv, abs/1306.0239.